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ABSTRACT

In the portion of the study covered. in this report,
linearized theory is developed for potential flow around
a slender body at not too large angles of attack. The
solution is obtained by "definitizing" the flow equation
and rigorously satisfying the boundary conditions. This
approach is completely different from conventional
methods in that it constitutes a process of obtaining
an analytic solution to the problem of potential flow by
a "march from the body" towards infinity.

The extension of this new theory to the nonlinear
case is immediate. Since there is no restriction of
the Mach number made in Sections 5 and 6, it is
expected that the new theory should be applicable to the
cases of subsonic, transonic and supersonic speeds
as well.
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1. INTRODUCTION

The three-dimensional equations of motion for unsteady isentropic
flow around a slender body are linearized under the assumption of angles
of attack.

The linearized equations of four independent variables are reduced to
two equations under the assumption of a potential. These two equations
relate the potential to the condensation. After the elimination of the con-
densation, a single equation for the potential is obtained. This equation is
called the indefinite flow equation. It is valid for the potential around any
body placed in the stream.

The potential is written as a sum of two potentials, the steady part and
the unsteady part. The unsteady part is represented as a product of a
space factor and an oscillatory time factor. The general approach of solv-
ing a flow problem is to obtain a general solution of the indefinite flow
equation first, then to force this solution to fit the boundary conditions of a
body under consideration. It is ,.nfortunate that this approach has not been
very successful.

Physically speaking, there would not be any flow problem if the body
were not placed in the stream. In other words, the flow fields are created
by the presence of the body through its definite boundary conditions. The
indefinite flow equation is too general. It has to be made definite for a
given body. This process is called the principle of definitization.

In this study, the principle of definitization is applied at the outset.
The flow equation is satisfied near the surface of the body and the boundary
conditions are taken into consideration right at the beginning. TLe solution
thus obtained contains an unknown factor, which when introduced into the
indefinite flow equation, gives rise to a definiti.zed flow equation.

This method of attacking the boundary vaiue problem for the potential
can easily be. extended to other boundary value problems. It is completely
new; at least to our knowledge, there is no similar approach used elsewhere
in the literature.

This is a purely theoretical development. No calculation is made; no
application is attempted. We are fully aware of the ways in which the
boundary conditions are har.dled and manipulated in classical potential flow
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theory, and of the facts that the potential solution has been condemned as
"inadequate" and "unrealistic" by various authors. Consequently, it is
hoped that this new approach in obtaining a new potential solution might
improve the classical theory and restore some of its merits.

This report contains eight sections. Section 2 gives the fundamental
equations of the linearized theory. Section 3 derives the boundary conditions
for unsteady potential flow around a flexible body. Section 4 shows the way
which leads to arriving at the new approach to the boundary value problem.
Section 5 gives the solution of the unsteady potential, Section 6 presents a
new solution to the classic problem of steady potential and Section 7 contains
further discussion of these solutions.

An engineer who is not interested in theory, may read Section 5 and
Section 6 without going through Sections 2, 3, and 4; however, he is also
cautioned that the flexible body under consideration should have second
order partial derivatives with respect to x2 and x 3 , and that the assumption
of x I = g(x 2 , x3) as the body equation is immaterial. It is only necessary
that one of the.space coordinates can be expressed as a function of the
other two. In case of corners, special treatment has to be made.

2



2. FUNDAMENTAL EQUATIONS

PRESSURE DENSITY RELATION

For adiabatic, isentropic flow the pressure density relation is
given by

p = Rp Y  (1)

where R and y are constants.

Let p1 and pl be the free stream pressure and density one has from
Equation 1

p yZ

One may set

P = P1 (1 + s) (3)

where s is the "condensation." Substituting Equation 3 into Equation 2 it
follows if s is small

- (+ s) 1 +Ys (4)Pi

Consequently, one obtains

1Dp_ Pl D(1 + s) = Ply Dln(1 + s) (5)
p Dt pl(l + s) Dt p1  Dt

Writing,

In(l + s) = 4  (6)

and

ply  2
2. 0 (7)

p1 1 o



where a o denotes the velocity of sound. Equation 5 assumes the form

Du
1 Dp = 2 4

- ca D (8)p Dt 0 Dt

NONLINEAR EOUATIONS OF MOTION

Denoting the Cartesian coordinates by x 1 , x 2 , x 3 , the time by t and
velocity components in xl, x?, x3 direction by ul, uz, u3 respectively, one
has as the governing equations ofthe fluid motion: the equation of continuity

3 8u /au u4  3 a4-u (9
Uxk t- uk 3xk (9)

k=1 k-1/

and the momentum equations

8u 3 3ui  2 au4
uk- -+a - = 0 (10)8 t u k 8x X.

k k

where i = 1,2,3

LINEARIZATION

Assuming that the fluid flows over a body (Figure 1) at an angle of
attack a when referred to a certain body axis, one can write

= U cos a + u 1

u 2 = 2 (11)

= U sina + 3

where U denotes the free stream velocity.

4



Substituting Equation 11I into Equation 9 and assuming that

3 &iik

k1 = xk

a4

I1 8kax< u4  (A)k 1 u Cos a -
ax 1

u sin a -U

L ax 3

one finds by dropping higher-order small terms the linearized continuity
equation

3 a U k /a4 au.4  a u 4

+ Uo Co ina(2

US1

Figure 1. Flow Direction and Coordinate System

5



Substituting Equation 11 into Equation 10 and assuming that for
i =1, 2, 3

a-ii

at

aii.
U cos a a

3 a8i aXl
I Uk a x <<  (B)

k= 1 aui
U sina- U a x

3

2 au 4
Lao axi

one obtains after dropping the higher-order small terms the linearized
momentum equations

aii. aii. aj. au4
U 4+ U cos a- + U sin a -x+ a o  - 0 (13)

at ax 1 a 3 1 x

i = 1, 2, 3

Equations 12 and 13 are the equations to be investigated in this report.

EQUATION FOR THE POTENTIAL

Since the flow is irrotational, one can assume the existence of a
potential (D , such that

k - ax k  k = 1,2,3 (14)

Substituting Equation 14 into Equations 1Z and 13, one obtains

8 _ _D au 4  au 4

2 a + U cosa ax 1 + U sina- - (15)
k xk

a. + U cosa +Usin0 a u (16)
1

i =1, 2, 3

6



Integrating Equation 16 one finds

'- a + O sine 8 - a u = - a u (17)
at+ oax X 3 o4 oU4,0

where u4, 0 is at most a function of time.

Solving Equation 17 for u4 and substituting the result into Equation 15
one finds

a 2 a) U s i n a - - t + U c os x

O x x2 a0Z 5 33ta 1 ax3
a 22a2l 3
8 c' i~~82 2 0 2

+ Usinc -- Ucosa 1 21 + -Jcosa- O---+ Usinc Ox 8x (18)

Ox 3(-oa 1 o

2+ a 8 = 0
2 + Ucosa a + Usinar a +a t

Equation 18 is the single partial differential equation for the total potential,
0, consisting of a steady part and an unsteady part.

Since one is mainly interested in harmonic oscillations, it is
reasonable to set

Z = l(Xl,Xx3) + * (xlx 2 ,x 3 ) e t
ot +a0fuN0 dt + B (19)

where A and B are arbitrary constants.

Writing

U U.- cosa = M, P -sice=na M (20)
0 0

one finds the equation

(I-M2M M + (1- M) + a 0 (21)
a O a c Ox a x c x2 "x 2

x1  1 3 a3 a2

7



for the steady part of the potential and the equation

22 2
( 2 2m __ a 1 2 a (

a x2 ac8x 1ax 3'ax 2
1 3 3

2
M .i ___

ax2 a 0 a 8x 1 a 0 c ax3
2o3

+ (--)~ =0 (22)
0

for the unsteady part of the potential.

For M > 1 both Equation 21 and Equation 22 are of the hyperbolic
type.

8



3. BOUNDARY CONDITIONS

SLENDER BODY AND DEFORMATION

Let us consider a flexible slender body (Figure 2) given by the
equation

f(x 1 ,XzX 3 ) = 0 (23)

before distortion, where, at each point, P(x, I4, x'3 ) on the surface away
from a neighbor hood near the nose, x I is much larger compared to x
and x 3.

FLOW X3 X2

Figure 2. Slender Bcdy Before Distortion

Now, let us express the Cartesian coordinates x12 and x4 in terms
of the polar coordinates r and 0. Denoting the axial, circumferential and the
radial displacements Ax', rA8 and Ar by u, v, w (Figure 3) and the coordi-
nates of the deflected position of the point P by xl, x2 , x 3 , one has



x, x + U

X2 (r + w)cosE) - v sinEG = X + wcosG - vsinO (24)

= (r + w)sinO) + vcosG = x + wsinO + vcosG

3

Figure 3. Distortion of the Cross Section

In the theory of shells, it is found that u, v, w are functions of xi, 0,
and t. For harmonic oscillation, one can write

U = X,,0) elWt

v=V(x 1,G) e~

w W W(xh0) e Wt (25)

where w denotes one of the natural frequencies of the whole system.

I I
Substituting x1  X I x ' into the original equation of the body, one

gets

f(x 1 -U, x? - wcos0 + vsinO, x3- wsin0 - vcosO) = 0 (26)

10



Using Taylor's expansion, it follows as a first order approximation of

Equation 26 the following result

f(xl xI,x 3 ) + 6(xl, x 2 , x ) e = 0 (27)
3 - 3

where compared to f(x 1 , X2 , x 3 ) the magnitude of 6(x 1 , x 2 , X3 ) is very small.

The function 6(xl, x 2 3 x 3 ) has to be determined either from the theory
of shells, if such a theory is available, or from tests.

BOUNDARY CONDITIONS

Let F(xl, xZ, x 3 ) be a function of three variables, x 1 ,x.,x 3, and

g(x , x 3 ) be a function of two variables, x2 and x 3 . Let us assume that

FgxZ,x 3 ), x?, x 3 ), the result obtained by substituting g(x 2 , x 3 ) for x, exists,
then we will denote this result by a pair of brackets, i. e.,

IF] = F(g(x Z ,x 3 ),x 2 ,x 3 ) (28)

Taking the total derivative of Equation 27, one gets the condition of
flow tangency to the deflected surface as

Of I 06+t/rz'\ O I a6 6 1tt 5-
Ox l~l e Ucos - X I e iIw~

ai 2x /1 2

+ + [ i e iWt) (sina a [5J + i + Ieiuwt 0 (29)

for xlxZ,x 3 related by Equation 27.

From Equation 19, Equation 29 becomes

('IOf + [__0 _6 1 e W\(c L 1- j~ 1ax ax ~ 1i / o a Ox a x e

- 86 it\

K' ~ + [x2, ew ([A' 1+ [1.e~t

ax ax2 ax1



a(i..i+ 6.. eiWt ~tsina - - 1 eiwt)+ iW 16]eiwt =0X 38Jlx3 x3 (30

Multiplying out the products and collecting terms, one has

Uax1 ax 8 x I+I aI Isina - lax1
11 U1 ] - 22x U 3 )

la lx a x a ax x (

I IitxU 1 2

yaxi 8 x Ilax 2 Ja;' [ lax 3 I

ai~t a 1 as 0~ (3a)LI
-e N(t I 1 x 2 -'lX6 ax I lax I I a1x IO (1ax rax- 2 3 3

Hence, we have

[a I co p + [af (.n 0tt
ax Uco ax I- la'xf [1axax 3  (Usa Iax 3I

1 2 2 3(32)

as the boundary condition for the steady potential, tbI

1-f a 0 + fa f I Ia 0 + a f aO F(x 21x ) (33)

where

F Cosa Oxax jjax2

+ o5  I( sina - k Ia, 1  (34)

x 1x



and

' 0f1 O O~ 16 1 0 (35)
Ox~1O 1  2 j la 2 I O 3 Jx 3

as the boundary conditions for the unsteady potential, 0. Since one is only

concerned with potential flow, the partial derivatives of the deflection function

6 have to be very small so that the condition in Equation 35 is automatically
satisfied and one has only one boundary condition for the unsteady potential
to satisfy.

EQUATION AND BOUNDARY CONDITION FOR THE STEADY POTENTIAL

To summarize, one has for the steady potential, tb, flow Equation 21

S2 2+ 2 2¢ 8

M 2  M M + (1 - M 2 ) +(1-M) -+MM=4o2 (q ]4
a 2 a c a x3ax 1  c 2 2

x1  3 3  8x 2

and the boundary condition of flow tangency

Ofs -Ia b O)- f I a +ij I (Of (sia0(2O xJL x Ox x0[ J

where the brackets are evaluated at the surface

f(x, x 2 , x3 ) = 0 (36)

which is a first order approximation of f(x 1 , x 2 , x 3 ) = 0

Since there is only one boundary condition at the surface when the
condition

dj = 0 (37)

at infinity is imposed, Equation 21 will have a unique solution.

EQUATION AND BOUNDARY CONDITIONS FOR THE UNSTEADY POTENTIAL

The equation for the space factor 0 of the unsteady potential is

13



21 3 2 2
(1- M 2  - 2M +(1 - M x2 + 2

a x2 a C ax 3axI ax2 x2
8x3 1 Ox x

1 3 2

2i - M 2i M -a +(22)
a c ax a a 8x (a

o 3 o

The boundary conditions for 4 are

Ox [Ox x axx'(x 2'3) (33)
1 1 2 2 3 3

and

[II1Q ~ 1 (X~ [3X 3  (35)

where F is given by Equation 34.

Mathematically, Equation 22 with two boundary conditions (Equation 33)

and (Equation 35) evaluated at the surface will not have a solution if some

condition is imposed after the body. However, one can consider the problem

as having a moving boundary so that Equation 33 should be satisfied at the

fixed surface f(x 1 , xZ, x3) = 0 and Equation 35 should be satisfied at the

moving surface defined by Equation 27. This means that the problem has

actually only a single boundary condition consisting of twoparts: one described

by Equation 33 and the other given by Equation 35. For actual computation,

Equation 35 has to be relaxed, since all the partial derivatives of 6 have to be

small to allow potential flow to exist.

TRAILING EDGE CONDITIONS

It will be shown that if the condition in Equation 35 is relaxed, the

solution cannot be unique. To uniquely determine the solution, one will have

to impose the condition that flow be tangent to the surface at the trailing edge

and the slope of the streamline is continuous in the region of the trailing

edge. From Equation 4, if the subscripts . and I are used to denote the

upper and lower surface of the body respectively, one will have

, - p Z- pIY ,(1- s4I

14



Kutta's condition says that after the body, which means for x, = L + c where
c is an arbitrary small number and glx 2 , x 3 ) 0, one should have

p - P= p (s -s 1 ) = 0

provided that s is small.

From Equation 17 and 6, one finds

80a¢8 2 so It +2s
+ Ucosa + Usina 8  = alog a (s -s)=0

[at a x1  ax + s

Substituting 0 given by Equation 19 into the left-hand member of the
above equation and remembering that both 4i and ; are independent of t one
obtains [ lu [ 1u

+~co sin a x + sin a2 + j.W
acos x-l + sin x3  in

+ TJao2 u4, 0 + AJ= 0

for all time t. Since the last bracket is independent of position it vanishes
identically. Hence one concludes

Cosa - + sina -x = 0 (38)

for the steady potential and

Cosa + sina + 0 (39)a x1  x 3  U

for the unsteady potential.

15
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4. FORMAL SOLUTION TO THE BOUNDARY
VALUE PROBLEM OF THE UNSTEADY

L POTENTIAL

GENERAL REMARK

In the classical theory of steady potential flow, the condition of flow
tangency at the surface of a rigid body has not been strictly satisfied. This
is true whether the solution is obtained by using the method of source or sink
or of doublets or by applying the technique of characteristic values.

Furthermore, the constants contained in all classical steady-state
potential solutions are actually functions of location. In the unsteady case,
it is expected that they could be functions of time as well.

To obtain a solution of the problem of unsteady potential satisfying the
boundary condition rigorously, it is clear that the conventional method cannot
be used and a new approach has to be tried. In this Section, we will indicate
the line of thought which leads us to a formal solution of the unsteady potential
problem, while the explicit solution of this problem will be given later in
Section 5.

REFORMULATION OF THE BOUNDARY CONDITIONS

As .t was done in Section 3 (Boundary Conditions), we will denote the
result of letting x1 = g(x2, x 3 ) in a function of xl, x?, x 3 by using the
bracket notativn [ ] . It is shown that

= (g, x Z, x3)g (x
[Ox 3 ] 3 3 x2 2-p

j (ix x , x 3 ) 
( 4 0 )

Let us assume for a moment that the steady-state potential has been
uniquely determined. Solving Equations 33 and 35 for [0/8.x3j and

4 [8 lone obtains as a first order approximation

F [o + fj (41)

[x3  3 x 2

- =F 17ax2+f 
(42)

17



where F3, f3 and Fl, fI are given functions of xz and x 3 alone. Equations 41
and 42 are two parts of the boundary condition for the space factor of the
unsteady potential to be used in discussions in this section.

EXPRESSIONS FOR THE SECOND DERIVATIVES

Using the bracket notation, one has the following identities in x2 and x 3

a z + a2

ax- - ax z I ax 2 + [ax (43a)

r

r I__ _ ___ ___ + __x3 __

2 L212 1
ax3 [a x ax3 axax

a [ ag a + a (43c)
x 2  ax 2 a1 x3 a xj1 + ax2ax 3]

o a i 3  a 4 X _ x3 _ 
(43d )

a3  x 3 [ax 3  a3 1

a a g 2 + a (43e)
ax 3 [ax 32 ax3 ax 1 ax z2 J[x 2aX3

a g a 2 + a~
ax ax3 ] ax Lax ax 1 a x 3

2

Because of the relation

ax2 a x3] ~ax

Q- a2  ag9 a4 (44)
a x x 3 ax ax3 a 1 3xZj

=ag a r a4 1 g a [a
a x2 ax 3  a x I a x3 ax 2  a x I

18



Equations 43 a through 43f are not linearly independent. It is easy to show that

the rank of the system consisting of Equations 43 through 43f is five. it can

also be shown that one can eliminate Equation 43a and consider the remaining
five equations as a system for the following six unknowns.

[ : a 2 [ ] ' 2 a [:3 x ] (45)8x 1 2 x 1  2 1x 2  2 X3 a8x 3x3 1x.

To obtain a sixth equation for the unknowns in Row 45, one solves
Equation 23 for x, in terms of x? and x 3 and makes use of Equations 41 and
42. The following flow equation at the surface of the body is obtained.

(1 + M M M +(l - M 2z+ 22) x 12 a c 8 x3 a xI1 c ax32x 22

(46)
2iwM F + M o +2i w(M f + M f

a 0  a 1 c 3 + a 0 a  c 3

Equations 43 a, b, c, d, and f and Equation 46 form a linearly independent
system for the unknowns listed in Row 45.

Solving this system and denoting

x] (47)8 x 2

one finds

A + B _ + C ___+ F (48)x 1l 2 l  I 11 x 2  11 a x 3  11

0+- A. +B + C + (49)
a x1 a x 2 iz 12 a x 2 2 a x- 12

a 0___ a L a; +F (50)
2 - 22 Z2"a x 2 22 ax-- 22

2x2 3

- Ag a;-+ . (51)
x A x323 23 x 2  C23 + 23

19



0z¢ A + a 8 + C .. q+ F (52)
2 33  33 8x 2 33 8 x 33(

a  '] + B +F (53)
x3O X = A3 x 3 1  31 x--- + C310 x---+ 31

where the A's, B's, C's and F's are given functions of x2 and x3.

Equations 48 through 53 give linear relations between the second order
brackets and the unknown function and its first order derivatives.

COMPUTATION OF THE HIGHER ORDER BRACKETS

In this section, how to obtain the third crder brackets is demonstrated.
The fourth and higher order brackets will be obtained in a similar manner.

Taking the first order partial derivatives of 01one finds

gi 0 " 1 (54)

8 2 -a x [ O- L 3 8 28x 2 a 1 2

a a0 a 0 a g + [a (55)1 1x 3 -ax12a xz  1 X 3  8 x 3  -ax3aE x 1

'introducing the unknown function r one gets

L31 ag + HH0
x xI 3- a x2 a x 2 x I 1

(56)

-A + B + _..+.D +E G

x2  a x2a x3 a x2 +  3

and

20



3 3 + 1 3
x3j + a% 1

[x 3 Xjj

(57)
A' + B C + +C' + E'% + G

a x2a x3 a x 3 2 x 3
3

where the A's, B's, C's, E's and G's are given functions of x2 and x 3 .

Similar linear expressions in terms of and its derivatives up to
second order can be found for the remaining third order brackets by
differentiating

2 [2 20
x x 2 x2 38 X1

with respect to x 2 and x 3 . There are 12 third order brackets connected by
12 linear equations; however, these equations are not linearly independent.
Three of them are linear combinations of the other nine. To find a non-
singular system, one augments these nine equations by the three equations
obtained from Equation 22 by differentiation with respect to xl, x2 and x3,
then setting x I = g (x2, x 3 ). This makes a system of 12 linearly independ-
ent equations for t4he 12 third order brackets. This system is sufficient to
determine r0at3 .

The fourth and higher order brackets can be obtained in a similar
manner. In fact, all we need are the bracketed derivatives

L x XI  x 1

Assuming that all these brackets are computed, then one is led to the
expression

¢(X1 ' x 2 O x3 ) - n"  [on (x - g)n (58)

n=O x

for 0 < x I < L
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where L is the length of the body as a formal solution to the problem of
unsteady potential flow with flow Equation Z2 and boundary condition Equa-
tions 33 and 35. The factor

h (x, x2 , x 3) - 1- g(x 2 ' x 3 ) (59)

vanishes identically in x2 and x 3 only when

x I = g(x , x 3 )

is substituted for x 1 .
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5. DETERMINATION OF THE
UNSTEADY POTENTIAL

The argument advanced in Section 4 has led us to a formal soluion of
the unsteady potential. To actually determine this potential, one part of the
boundary condition has to i.e relaxed. This is condition Equation 35. The
best justification of doing this is that the partial derivatives of 6 have to be
small in order to keep the flow potential; otherwise, the body cannot be
smooth and the flow will be turbulent, which is beyond the scope of our
study.

DETERMINATION OF THE MEAN SURFACE

In Sections 3 and 4 we have considered a body given by Equation Z3:

f(xl, xI , x 3 ) = 0

When it is placed in an unsteady air stream, it experiences a deflection

6(x I , x 2 , x 3 )

The flexible body oscillating harmonically in the air flow is described by
Equation 27:

iwt
f(xl, x 2 , x3)+ 6( x 2 , x3)e 0

Now, let us suppose that we are interested in an observation period,
To, where T o is small. One procedure of obtaining a mean surface would
be to take the time average of Equation 27. This gives

f(x 1 , x 2 , x 3 )+ 6(X, x 2 , x 3 ) iT 0 (T(6

Taking the real part of the left-hand member of Equation 60, one
finds

sin wT 0
f.(x, x,2 , x 3 ) f(x 1 , x 2, x 3 )+ 8(x1 X , x ) 0

3 T ' 3
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as the mean surface of the oscillating flexible body. Solving the above

equation for xI one finds

x, = :(x 2 : x 3 ) (61)

RECURSION FORMULA FOR THE COEFFICIENTS

From the discussion given in Section 4, one is led to conclude tha th.

space factor 0 of the unsteady potential has the form

0= >A- n(x2 , x 3 )[ xi - g(x 2 , x3  (62)

for 0 :5 x I < L

where L is the length of the body

The coefficients of this power series have to satisfy the following

equations. These are flow Equation 22:

2 2a20 2 2 2

a 2 a c a 3ax c ax2
13 13 2

-2i - L M - - 2i---M 0+ 2 0
a--a a8x i a0 c a x 30 a 0 3 )

and the condition of flow tangency Equation 33:

r a 0 f1' jI 3x
x + I I]

where, because of the smallness of the partial derivatives of 6, F is set to

zero and condition Equation 35 is relaxed, since it is approximately

satisfied. The brackets indicate the fact that after the derivatives are taken,

x 1 is replaced by g(x 2 , x 3 ).
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Taking the derivatives of 0, defined by Equation 6Z, ne obtains

co
8 = (n - 1) A (x - g)n
x- a+1 I
I n=0

80 c An 8gc
8x3  8x (x I  .g)n -_ 9 (n + 1)A.g n

ax =x1 n + 1(x 1 9

3 =O n=0

2 co
a = 0 (n + Z) (n +)A2 (x - g)n

2 n+2 I

a x,, n=-0

a - ( ) (xI (g)n + a- ax > ,n+2)(n+l)A n (xl-g) (63)
x3 x n=1C 3 3 =n+

2 co a2A o8
an n ag '7n+1 Ifl ~
.x _n, (x 1 _ g) 2 8 Z3 , (n + 1) (x 1 _ g)

x3 n=ax 3  3 n=

9- (n + 1) A (x (n x g) n
x 3  0 n+l 1 9)( ) ( n+2 I

2 o O A no8n n+)

-nz- - (x "g~n xn (n + 1) -2 (x I g)
8. n=O 2n=

- 8 2 g co - ) aX- (n+Z)(n+1)A (x.gf
g2 (n+1)A )(xg) + x 2 / n0 n+2(xl-g

ax n=O
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On substitution of Equations 62 and 63 into Equation 22, it follows by

comparison of the coefficients of (x 1 - g)n the recursion formula

(n -4)(n+ + 2M M + 1 M (64)
a a c ax_3 ax3)

+ ag V = 2(n+ 1) M M -a (1 a 9
2 /1 fn+2 a c 8x 3  c /ax 3  x 3

ax) In2 axx xn+ a 58- 1 /, 2 1 a 2 g gA
X7 +g + i - - M -i M n+

2 c) x x 2 a a a- c a x3
3 2

2 +  Z i

M a 2 a 2 i M a + -2A- M x 2 ax a M cx 3  n

for n=O, 1,2,...

We will assume that the function g(x 2 , x 3 ) is infinitely differentiable.
Equation 64 determines An+Z when An+1 and An are known. In particular,
it defines A 2 in terms of A 1 and A o . Consequently, An+? is a function
of A 1 and A o .

DETERMINATION OF An

Recursion Equation 64 may be written as

(n + 2)! A n+2 + Zb (n + 1)! An+ 1 + cn! An = 0 (65)

where

b - M +ZMM ag + g (66)a a c ax M?)8ax3) +j 7 )

x M a / -M M2" g a-+ag aa ax c a ax axa c 3  2 2

+ 2ag + I g+i W' -  M -i W - --
+- -M 2 ax 2  a a a c

3  2
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and

2 3g 3 2\ g\2 + ag2m a M a + Zac a x3 + \c x3 + \Y-") (67)

... + i -' M a +1

caxa3 2 0

are linear functions of the operators a/ax 2 , a/ax 3 , 8 2 /ax and
8 2 a xi with coefficients which are functions of x 2 and x 3 Neither
b nor c contains n.

Setting

A u(n) (68)
n T(n+ 1)

one gets, on substitution of Equation 68 into Equation 65, the equation

u(n + 2) + Zbu(n + 1) + cu(n) = 0 (69)

So far as n is concerned, Equation 69 is a difference equation with constant
coefficients.

To integrate Equation 69, one defines an operator E by

E u(n) = u(n + 1) (70)

Equation 69 can be written as

u(n + 2) - (2b E + c) u(n) (71)

The solution of Equation 71 is

u(Zm) (-1) m (2b E + c)m u(0) (72)

for n = 2n and

u(Rm + I) (-I)rn (Zb E + c) u(1) (73)

for n = 2m + 1. Substituting Equations 72 and 73 into Equation 68, one
obtains expressions for An*
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THE UNSTEADY POTENTIAL

From Equations 68, 72 and 73, one finds

o = (-l)m  "I (m + l)(x I -g) (2b E + c) u(O) (74)

m=O

I Zm±

+ (-I)m F -l (zm + z)(x I  g) (2b E + c)m u(1)

m=O

while the boundary condition given by Equation 33 yields

a 1 Of I8o Of OA

(O ]g -- A A= 0 a a o0 (75)
ax O x O 3  Ox 1. a x~~

or

u(1) = hu(O) (76)

where

hf 1 Of +([O 0 + 1a)7 7 )

([lx ax 2 a x 3 a1I 2] Oax2  x3J ] a

Hence, we have

= (-I) m r-' (2m + l)(x I  g) (2b E + c)m u(O) (78)
m=O

1-~m - gZm+1 i

+ (2m + Z+2)(x g) (2b E + c)m hu(O)

m=O
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Symbolically written, we have

0 = cos [(x - g)(Zb E + c)'12 JU(O) (79)

+ sin (x - g)(ZbE + c)l1/2j (2bE + c) 1 /2 hu(O)

TRAILING EDGE CONDITION

Condition 39 for the nsteady potential can be written approximately
as

Cos a + sina a -0 (39)

[os 51 ,jl [ax3]

where 8 q /a x, and a 0 /a x 3  are evaluated at x1 = L + e and

g(x 2 , x3) 0

From Equation 62 one finds

ax1  (n 1) An+ (L. + )

n=O

[ax 3 ] ax.
n=0

Consequently, one has
aA

(n + 1) cos a A + sin as- = 0 (80)n+l a x 3

or

n

A = (-1)n - (n -- 1) (tana) n  A (81)
n n 0

3
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particularly for n = 1

a
A = - tan a -- A (80a)

1 Ox 3  0

and for n = 2

1 Z aZ
A =- taI a A (80b)2 2! 0

x 3

From Equations 76 and 77 one finds[ 8 A OAOf o Of - tan a o1 = 0 (81)

Ox8 If O8X 2  \,O'x Ox O./8X3

the solution of which is

A = C 1H(x,, x ) (82)o [
where,, H(xZ, x3 ) is a known function uniqaely determined by the shape of
the body and C is an arbitrary function of H(xZ, x3)

Substituting Equation 82 into Equation 65 for n = 0 one gets the
following equation for C

a(x 2 , x 3 ) C1 +P(x 21 x3 ) C' + Y(x2 , x 3) C = 0 (83)

where e, p and y are functions of x Z and x 3 uniquely determined by
the geometry of the body.

I" Equation 83 can be solved at least numerically to give

C JH(x2, x 3 )4 It is clear that, in general, only an approximate solution
can be obtained Further discussion on this solution will be found in
Section 7. Here, we point out the fact that, as a result of a physical
problem, Equation 83 should have at least a characteristic root with a
negative real part indicating the existence of a region of stability.
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6. EVALUATION OF THE STEADY POTENTIAL

EQUATIONS FOR THE STEADY POTENTIAL

This report would be incomplete if the steady potential is not reevalu-
ated, simply for the following two reasons: first, the classical potential
theory does not rigorously satisfy the boundary condition for a sharp-nosed
slender body of revolution and even less for an arbitrary slender body;
second, the steady potential is also essential for the unsteady aerodynamics.

For the steady potential 4i, one hbs flow Equation 21

(1 - Ma 2) 22 - 2M M a + (1 Mc a a +

a x 1 x 3 x1 a x 3  a x 2

and the condition of flow tangency (Equation 32)

2 2a +a3

U- fcos a [-J sina
u(I lJ + +v

where the brackets are evaluated at the mean surface (Equation 61)

x I = g (x 2 , x 3 )

RECURSION FORMULA FOR THE COEFFICIENTS

Advancing the same argument given in Section 4, one can also assume

B (x, x3 ) (x _ g)n for 0 5 xl - L (84)
L=3 nZ 3 1 1 (4

n=O

where L is the length of the body. Differentiating Equation 84 and substituting
the results into Equation 21 one obtains the recursion formula
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(n2 (+1) (1-M M)±ZM g (1Mc2) LOg. 8 (og/ j\

+2M M + 0 - + Baa c8x 3  c x3) + 2

2(n + 1) M - 2- g a a g + (1/M2 2 (85)
M( cx 3  x3 3 2 Ox3

1 2Og B (+ M z a2 a2

2 2 n+ 1 c a-- "3 2  Bn

Equations 85 are sufficient to determine B. , B 3' in terms of B and

B 0 ,

Using the boundary condition (Equation 32) one finds also

B h*B 0 + k* (86)

where

(1 af a O Of a'Of I8 a f a (
a~~ix [O a x aOx I)2 aIXIO + [3 -/ (87)

x2 2 3T 3 1 2O 3

is an operator and

U- fO 2  IiI 3 1 O f cos a + -1-3f sini) (88)
O x z  aOx x \xI x

is a scalar.

Through Equations 85 and 86 all the B's are expressible in terms of B 0 .

DETERMINATION OF Bn

Recursion Equation 84 may be written as

(n + 2) ! B + 2b* (n + 1) ! B + c'n ! B = 0 (89)

n+2 "n+" n
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w|h- 're

-1

2~O 0g +1

b' ;(- Ma ) + 2MaM a (x 3 Mc + ax2(90)

MaMc + (1 - M +} 0 x
ax 3Ox 3 x 3 x, Ox2,

and

(12- Mc+) 2 +C, M x~ +2MMc 3 +'g x(1

2lM 2 2 2 F

are linear functions of the operators 8/8x 2 , 0/Ox 3 , 0 2 /X, a 2lx3 2 with
functions of x2 and x3 as coefficients. It is assumed that the function
g(x2, x 3 ) is infinitely differentiable. Neither b* nor c' in Equations 90 and
91 contains n.

Letting

B1 v(n)/r(n + 1) (92)

one finds from Equation 89 the following equation for v(n).

v(n + 2) + 2b"-v(n + 1) + c'v(n) = 0 (93)

Defining

Ev(n) = v (n + 1) (94)

one obtains the symbolic solution of Equation 93 as

m i.(5
v(Zm) = (-l) (2b:: E+ c *)m v(0) (95)

for n = 2m and

mmv(Zm + 1) (-1)m (2b' E+ c*)m (h*v(O) + k*) (96)

forn = 2m+ 1.
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Consequently, one has

B =(-i)mrl (Zm +1) (2b"' E + c")m B 0  (97)

2mm
B 2 m + I (-1)m r- (2m + 2)(?bE (h B 0 +k)

as expressions for the B's.

CONDITIONS AT INFINITY

Substituting Equation 97 into Equation 84 one has

-(1 m1. -l2
Cx 1, Px 2 v x 3 )(l r (Zm + 1) (X 1 - g)2 (2b" E± C.~ B 0  (98)

m 0

+ I (-l)m r (2m + z) (xl - g)(Zb* E+ c*)m (h*B 0 + k*#)

M=0

or written symbolically

CPx 1, IX 2 , ) Cos [ (x 1 - g) (2b* E + c*) 1/2J1 B 0  (99)

+ sin 1x x 1 -g) (2b* E + c*)1 /2(b- E + c*~)-lZ~~ +0 '

Equation 99 represents the steady potential which satisfies the f low
Equation 21 and the condition of flow tangency Equation 32. Besides these
equations, the steady potential 4' has also to satisfy the trailing edge
condition anti the conditions at infinity. The conditions at infinity are

4'(x1 , x2 , x) (i)

bounded for all

L :5x <c

and

'(x1 ,) x 2 P x 3 ) 0  (

fo r

x z+ ~2 _
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That condition (i) is satisfied can be seen from Equation 99 by substitut-
ing L + for xI and g 0. To satisfy condition (ii) one has to choose B 0 in
such a way that

(2b* E+ c.,) m B 0- 0 (100)

and

(2b%, E + c' )m (h'*B 0 + k*) - 0 (101)

2 2
for all positive integers m as x 2 + x 3 - co

Equation 101 is only possible when h' has bounded derivatives and

(2b.- E + c',)m k* -0 (102)

2 2
for all positive integers m as x 2 + x 3 -- C.

To -' ,w that condition in Equation 102 can be satisfied, let us take the

case of paraboloid with elliptic cross sections

f = Xl - g(x 2 x3  = +I - ( }= 0

where P and Y are fairly large constants.

Here, one has

g 2  ag fg f g
= 2 = [ --, =

ax 2  P3 1 2 3 2

Consequently, we have

U(cos a -a sin a) 2 2 -1
8 x3  x3  x. x3

M= U(cosa - 2--sin a)4- + 4 - + 1

Fxs2na')f 434

It is obvious in this case that

2 2k" -"0 for x2  + x3 -CO

35



As a second example, let us take the cone

f = Xl 1 cot z 20(x 2 + x 3 ) = 0

where 00 is the cone half angle. Here, we have

Hf1 =f, 1 a I = -f =x 3

axIa 2 a2lax 3ax3
Dg xxt g x30cot0 a cot 00
8x2 2 + a3 0/~x2 + x 3 2 V x2 2 +X 3 2

Consequently, we have

X
3

U(cos a - cot0 2 - sin a)

= 2 2 2Vx2 + x 3

cot 00 + I

The condition k:- remains small can only be satisfied when the cone half

angle is small

TRAILING EDGE CONDITION

Condition 38 for the steady potential L leads to the result

B () n r- (n + 1) (tan a)n E B (103)
n B (13ax3

which when substituted into Equation 89 for n 0, gives the equation

S2B 2B02 0  0B

0
+ e x +4 3  a 5 B0 = 0 (104)

a x3  3 a x 3  4 3

where the a's are given functions of x 2 and x 3 .
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Writing Equation 103 for n = 1 and substituting the result into
Equation 86 one gets

tana -+ h' B + k" = 0 (105)
3

Combining Equations 104 and 105, one has a system of two equations for B 0
which can only be solved analytically under certain conditions. In general,
only a numerical solution can be obtained. Further discussion on this
solution is continued in Section 7.
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a 7. UNIQUE DETERMINATION OF THE UNSTEADY POTENTIAL

In Section 5 we have derived a linear ordinary differential equation
(Equation 83) for A 0 = C, the solution of which is evidently not unique. The
theory developed thus far is still incomplete, unless one can uniquely deter-
mine A 0 . This will be done in this section.

ASSUMPTIONS AND DISCUSSION

Let us consider for a moment x 2 and x3 as parameters and denote the
roots of the characteristic equation

2
+r +Pr + y = 0 (106)

by r I and r 2 . Then the general solution of Equation 83 is given by

Sr 1 H r H
C = A(x2 x3 )c + B(x 2 , x3 )e (107)

Let us assume that for x2 2 + x3
3 -- _, C-- 0 then for A 0 = C and An defined

by Equation 81 Equation 62 satisfies all the equations and boundary conditions
imposed on it so far. Since A and B are arbitrary, the function 0 is not
unique.

4 THE CONDITION OF STAGNATION PRESSURE

To uniquely determine the unsteady potential, one recalls that in the
classical potential theory for a sharp-nosed slender body, additional condi-
tions at the nose were imposed on the velocity potential. Since these condi-
tions are not available for a blunt-nosed body, one could fix the arbitrary
functions A( x 2 , x 3 ) and B( x 2 , x 3 ) by predetermining the stagnation pressure.
Since the body is at an angle of attack, the coordinates of the stagnation point
are functions of a. Let us denote the stagnation values by the subscripts s

and assume the unsteady stagnation pressure in the form

Ps i~t
P- pl + e P 2  (108)
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From the nonlinear Bernoulli's equation one has

P +P e it 1 U2  UCosa-L + U sin a
1 3

(109)

+- e iWt + U Cos a' + U sin a -
1 8x 1 x 3

By comparison one has

Pl = 2 + U cos - aP + U sina (110)

and

p2 =w b Uoa sia (111)PZ= iWb + U cos 08x + U sin 8x-

12 3 1 1

Since Pl and p? are given, Equations 110 and 111 are sufficient to determine
the arbitrary "constants" contained in 4' and 0. This finally leads to a unique
solution for the problem of unsteady potential flow around a slender body at
angles of attack.
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8. CONCLUSION AND RECOMMENDATION

The results given in this report represent an attempt to solve the prob-
lem of unsteady potential flow around a slender body first by satisfying the
boundary condition at the body, then by working the solution toward infinity.
With regard to the problem of convergence cf the solution, no positive state-
ment can be made at this time.

To evaluate the merit or demerit of this method of solution, it is
recommended that it be tried, for example, on a paraboloidal body with
elliptic cross sections to see whether or not the series converges. If the
series does converge, then this method should be explored further, and a
convergence proof should be established by imposing appropriate conditions
on the function g (x 2 , x 3 ). If the series diverges for a paraboloidal body,
then this method should be disregarded.
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